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Effects of a flexible boundary on hydrodynamic stability 

By T. BROOKE BENJAMIN 
Department of Engineering, University of Cambridge 

(Received 22 September 1960) 

The theoretical study presented in this paper was inspired by the recent report 
(Kriimer 1960) of experiments showing that considerable reductions in the drag 
of an underwater solid body were achieved by covering it with a skin of flexible 
material; apparently this effect was due to the boundary layer being stabilized 
in the presence of the skin, so that transition to a turbulent condition of flow 
was prevented or at least delayed. The stability problem for flow past a flexible 
boundary is here formulated in a general way which aUows a full exploration of 
the possibility of a stabilizing effect without the need to assign specific properties 
to the flexible medium; the collective properties of possible boundaries are 
represented by a ‘response coefficient’ a (a sort of ‘effective compliance’) 
measuring the deflexion of the surface under a travelling sinusoidal distribution 
of pressure. 

A remarkably simple analytical connexion is established between the present 
general problem and the corresponding stability problem for the boundary layer 
on a rigid plane wall, and hence many details of the existing theory of hydro- 
dynamic stability are immediately useful. However, the presence of the flexible 
boundary admits possible modes of instability additional to those which already 
exist when the boundary is rigid, and clearly every mode must be considered with 
regard to practical measures for stabilization-$hat is to  say, it might be useless 
to inhibit one mode by a device which lets in another. What is believed to be an 
essentially complete interpretation of the over-all possibilities is deduced on 
recognizing three more or less distinct forms of instability. The first comprises 
waves resembling the unstable waves which can arise in the presence of a rigid 
boundary, but now being modified by the effects of flexibility. These waves tend 
to be stabilized when the boundary has a compliant response to them, which 
means the respective wave velocity has to be less than the velocity of free 
surface waves on the boundary; but it is found that the effect of internal friction 
in the flexible medium is actually destabilizing. The second form of instability is 
essentially a resonance effect and comprises waves travelling at very nearly the 
velocity of free surface waves. These waves can only be excited when the latter 
velocity falls below the free-stream velocity; they are scarcely affected by the 
viscosity of the fluid since the ‘wall friction layer’ is largely cancelled, so that 
damping due to  the medium itself becomes the only stabilizing factor. The third 
form is akin to  Kelvin-Helmholtz instability. 
This interpretation of the theoretical results seems to point to the essential 

factors in the operation of a flexible skin as a stabilizing device, and accordingly 
in the concluding secttion of the paper two alternative sets of criteria are proposed 
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each of which would provide a logical basis for designing such a device. The 
principle of the first alternative explains the success of Gamer’s invention, but 
the second appears equally promising and the relative advantages of the two can 
really be proved only by further experiment. 

1. Introduction 
The recently reported experiments by Kramer (1960a, b )  have evidently 

aroused wide interest in the possible uses of coatings of elastic material as a 
practical means of preventing transition to turbulence in laminar boundary 
layers. His important pioneering papers presented evidence that the device 
invented by him had brought about considerable reductions in the drag of under- 
water bodies, and following the publication of his original idea there has naturally 
been speculation regarding other applications of this method of stabilization. The 
purpose of the present paper is to examine this idea theoretically, attempting 
to reveal the general practical possibilities rather than to establish complete 
solutions applicable to specific stabilizing devices. The problem is treated by use 
of the Tollmien-Schlichting type of stability theory, and the discovery is made 
that the minimum Reynolds number for the existence of neutral wave disturb- 
ances is in various circumstances increased by flexibility of the boundary. This 
is encouraging from a practical point of view, because in its more familiar applica- 
tions, the perturbation theory of boundary-layer stability has been well-con- 
firmed experimentally. 

At first sight the present problem appears vastly more complicated than the 
corresponding one for a rigid boundary, which itself is by no means easy; but 
a way is found to adapt the results of previous theories fairly readily, so that 
solutions can be found without very much additional labour. The main difficulty 
intrinsic to all stability problems of the present kind is to solve the hydro- 
dynamical equations to an adequate degree of approximation; but there is no 
need to tackle this anew since our problem admits use of the ‘Tietjens function’ 
and other functions depending on the general solution of the Orr-Sommerfeld 
equations which have been calculated previously. The analysis in fact leads to 
an equation which, except for a simple additional term, is the same as the central 
result of Lin’s modified formulation (1945, 1955) of the Tollmien-Schlichting 
theory for parallel flows with rigid boundaries. As in this previous case, the com- 
plete class of neutral stability conditions is represented by this equation; in the 
present case, however, its interpretation is rather more difficult. 

The proposed method of stabilization may generally require close specification 
to insure a useful result, since its application is liable to have the contrary effect 
of destabilizing the flow. The extra mobility introduced when a flow boundary is 
made flexible creates the possibility of modes of instability additional to those 
which may already exist when the boundary is rigid, and there is one such type 
of instability whose importance in present respects can at once be recognized. This 
takes the form of waves progressing in the flow direction at very nearly the same 
speed as free surface waves in the flexible medium, the waves being amplified 
by the action of the flow which supplies sufficient energy to counterbalance 
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internal dissipation. The mechanism of generation of surface waves in this way 
has been studied at length by Miles (1957) and Brooke Benjamin (1959: hereafter 
this paper will be referred to as I). As formulated in the following pages, the stabi- 
lity analysis covers this type of waves as well as a type that can be considered to 
comprise Tollmien-Schlichting waves modified by the influence of the flexible 
boundary. The two types are not really distinct analytically, but the physical 
problem is most readily understood by considering them separately. (Two such 
distinct classes of waves were recognized by Lock (1954) in his treatment of the 
stability problem-which is closely related to the present one-for a boundary 
layer at the interface between an air stream and deep water; he called them 
respectively ‘water waves’ and ‘air waves ’. The theoretical results presented in 
his paper are very complicated, and me insufficient to indicate a general physical 
interpretation of the effects of the water surface on stability.) A third type, 
which will be called ‘Kelvin-Helmholtz ’ instability in view of its analogy in the 
classical problem of discontinuous fluid motions, has also to be recognized as a 
possibility. 

The analysis will be made on the usual lines of stability theories for parallel 
flows, and many of the familiar details will be taken for granted. We generally 
take dimensionless variables according to the usual scheme (Schlichting 1955, 
p. 316), but we change without comment to dimensional forms whenever this is 
helpful and the new meaning is clear. The case of boundary layers with positive 
(adverse) pressure gradient will not be covered explicitly; this case is within the 
scope of the theory, and the general conclusions derived here would appear to 
apply to it, but it presents complications which can well be left for later study. 
The essential effects to be brought to light are demonstrated adequately with 
reference to boundary layers with negative or zero pressure gradient, for which 
the velocity profile has no inflexion. Most of the analysis is concerned with neutral 
disturbances which are simple-harmonic in time and in the co-ordinate x parallel 
to the primary flow velocity U(y); that is, all velocity and stress perturbations 
have the common factor exp {ik(c - ct)) ,  where the wave-number k and wave- 
velocity c are real. The justification for confining attention to two-dimensional 
disturbances will be considered briefly in $ 5. 

As a preliminary to the main analysis in $3, an outline of the Tollmien- 
Schlichting theory is given in $ 2. The results recalled in 0 2 are all quite well 
known (e,g. see Schlichting 1955, ch. 16, or Lin 1955), but it is a great advantage 
to have a short account of them here for easy reference in the later parts of the 
paper. 

2. The Tollmien-Schlichting theory of boundary-layer stability 
The essential points of this theory are to be adapted directly to the present 

problem, and its physical basis is specially worth reconsidering here. The theory 
recognizes that, for the large Reynolds numbers at which neutral small dis- 
turbances become possible, the effects of viscosity are confined to two ‘friction 
layers’ whose thickness is very much smaller than that of the whole boundary 
layer. The first adjoins the wall and its thickness is O(lcR)-b. The second surrounds 
the critical point y = yc at which U = c, and this layer is rather more diffuse than 
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the first, its thickness being O(kR)+. A vital step in the theory is the assertion 
that an adequate approximation to the solution of the Om-Sommerfeld equation 
can be found in the form 

where $(y) is the solution of the inviscid version of the equation, and f(y) is a 
rapidly varying solution which can be taken to be insignificant outside the wall 
layer: f(y) is approximated as the solution of another simplified version of the 
equationderivedfrom the facts thatf"/f = O(kR)  9 U"/cand B k2. The condition 
to be satisfied by the solution at the outer edge of the boundary layer is taken to 
be a condition on $ alone; thus, 

$(!I) +f (Y) ,  (2.1) 

$'I# -+ - k  for U --f U,. (2.2) 

The effects of viscosity over the inner friction layer are not explicitly repre- 
sented in this approximate solution, and the solution is therefore invalid in this 
region. However, the theory demonstrates that (2.1) will be a uniformly valid 
approximation on either side of the inner friction layer, provided that in y < yc 
the inviscid solution $ takes on a certain feature which is left unresolved by the 
inviscid equation. The critical point is a singular point of this equation, and 
consequently $' has a logarithmic singularity at y = yc. In passing through 
y = yc, therefore, ambiguity arises as to which branch of the logarithm to take. 
Tollmien showed how the choice is determined from the complete Om-Sommer- 
feld equation; he investigated an approximate solution which tends to $ for 
y > yc+O(kR)+ but which remains valid in the immediate region of y = yc, 
and so indicates the appropriate form of q5 for y c y c - O ( k R ) 4 .  When the ap- 
proximation (2.1) is adjusted according to the principle established by Tollmien 
and substituted in the boundary conditions at the wall y = 0, relations between 
the parameters k ,  R,  c can be found which desoribe the conditions of neutral 
stability. 

The conditions of zero normal and tangential velocity at the wall require that 

and 

where the subscript denotes values for y = 0. Hence 

Now, fw/fk can be found from the simplified equation describing the effects of 
viscosity in the wall layer, and the only characteristic of the boundary-layer 
profile on which it depends is the initial gradient 77;. When equation (2.4) is 
multiplied by - Uk/c, the quantity given on the left-hand side found to be a 
function of z = ( k R U k ) )  c/Uk alone; and the right-hand aide, being independent 
of R, is a function of k and c only. Thus the equation can be expressed as 

F ( z )  = E ( k ,  c). (2.5) 

The 'Tietjens function' P(z)  has been extensively tabulated; and since it is 
independent of the form of the velocity profile, it is universally applicable to  
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stability problems of the present kind. The function E(k, c )  depends on the over- 
all velocity profile, and the calculation of this function is the most difficult part 
of the practical task of finding neutral-stability curves. Later in this paper use 
is made of an approximate expression for E(k, c) ,  such as was used originally by 
Tollmien and Schlichting to estimate this function for the Blasius velocity profile 
on a flat plate at zero incidence. More accurate calculations have been made by 
Lin (1945, 1955), Holstein (1950), Shen (1954) and other writers, and their 
results are suitable for adaptation to our problem; but the expression we shall 
consider has the advantage of simplicity, and seems adequate for the purpose of 
this exploratory study. 

For details of the calculation of neutral-stability curves by the original method, 
we may refer to Schlichting’s book (1955, pp. 327-329). The imaginary parts of 
P and E are plotted against their real parts on the same graph, the curves being 
determined parametrically by 2, k and c.  From the points of intersection of the 
curves, one obtains sets of values of z, k, c representing conditions of neutral 
stability. Elimination of c from z then gives the co-ordinates of the neutral- 
stability curve in the (R, k)-plane. 

This outline of the theory omits the various refinements due to Lin and others 
which have led to improved estimates of the neutral-stability curves. For in- 
stance, the Tietjens function can be applied in a more exacting way than at 
present (see Lin 1955, pp. 40, S O ) ,  although the simple definition is reasonably 
adequate for most cases of interest-more specifically, for cases where the critical 
point is close to the boundary, so that the approximations UL ri. UL (= U’(yc)), 
yc + c/UL are fairly good. However, the main improvements that have been 
made on the original calculations of Tollmien and Schlichting are due to better 
estimates of the function E(k, c ) ,  and the status of this function in the modern 
theories remains the same as in the original theory. The important thing to note in 
this connexion is that although we shall introduce here some rather crude approxi- 
mations taken from the Tollmien-Schlichting theory, the analysis of the flexible- 
boundary problem is set in a form such that the way is clear to take advantage 
of the best available results if the need for precise data should arise. 

One small detail of post-Schlichting theories needs to be noted. This is a modi- 
fication of the formula (2.5) which was introduced by Lin (see Lin 1955, p. 40). 
If one defines 

1 1 
u+iv = - 

1 - F(z)’ 1 -E’  F ( z )  = ___ 

(2.5) can be put in the form 
F ( 2 )  = u+iw. (2.6) 

This alternative form has the practical advantage that successive approximations 
to u + iv can be expressed much more conveniently than the equivalent approxi- 
mations to E.  It turnp out that v varies only slightly with Ic (see Lin 1955, 
bottom of p. 40), and this fact is found to be highly significant in the present 
problem. 

The physical ideas underlying the theory, particularly with regard to the two 
friction layers, provide a useful insight into the analytical results derived later; 
and although the points in question are fairly well known, they deserve to be 
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reconsidered here as a preliminary to our physical interpretation of the effects 
of a flexible boundary. It is a remarkable fact, first realized clearly by Prandtl 
many years ago, that viscosity is responsible for the instability of laminar 
boundary layers in the absence of adverse pressure gradient. For fluids without 
viscosity, two theorems due to Rayleigh prove that a parallel flow whose velocity 
profile has no inflexion is stable; and so, if for a red fluid such a flow is to be un- 
stable at all, viscosity must be capable of a destabilizing action in addition to its 
expected damping effect on small disturbances. Prandtl(l935) showed that the 
required destabilizing effect is generated by the wall friction layer. When the 
primary flow (at large yet finite R) is given a wavy disturbance, this layer of 
intense vorticity occurs because the tangential velocity component of the dis- 
turbance has to be brought to zero right at the wall. The vorticity distribution in 
the layer is such M to displace the effectively inviscid flow outside it in a manner 
quite unlike that which would happen if viscosity were entirely absent and the 
edge of the flow were governed by a kinematical condition alone. The velocity 
components u, v of the disturbance just outside the wall layer are thereby given 
a difference in phase such that the average Reynolds stress -p5V is positive. This 
means that energy is converted from the basic flow into the disturbance, at arate 
-pEVU‘Sy per unit length in each layer 6y; and when the energy supply is 
sufficient to balance viscous dissipation, a neutral disturbance can occur. It is 
a simple matter to show that this Reynolds stress is given by 

where the asterisk denotes complex conjugates and 9 the imaginary part. 
As a slight variation on Prandtl’s argument, we observe from (2.4) that the 

phrtse relation between # and #’ right at the wall is determined by properties of 
the viscous solutionf. But whereasf becomes insignificant outside the wall layer, 
the values of # and #‘ for a considerable ‘distance beyond the layer are very ap- 
proximately the same as their values at the wall. Hence, putting #w = (fw/fh) #;, 
we conclude that a close approximation t o  the Reynolds stress outside the wall 
layer is 

The imaginary part of the Tietjens function is positive for all relevant values of 
z (z being necessarily positive for waves travelling in the flow direction), except 
for small values ( < 2.3) at which the critical point is brought so close to the wall 
that the two friction layers overlap and the present Msumption of an inter- 
mediate inviscid region breaks down. Thus, the Reynolds stress is shown to be 
positive, as it must be for a neutral disturbance to be maintained against the 
dissipative action of viscosity. 

The theory of the inviscid equation shows that Y(#*#’) is constant through- 
out any range of y not including the critical point; but on opposite sides of the 
critical point the oonstant can have different values. The boundary condition 
(2.2) requires that # is in phase with - #’ at the outer edge of the boundary-layer 
profile, which means that the Reynolds stress is zero there and hence, because of 
the property noted in the last sentence, it must be zero everywhere beyond the 
inner friction layer. The phase difference necessary for the positive Reynolds 
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stress in the region between the two friction layers is therefore acquired entirely 
at the critical point, this effect being of course just another interpretation of the 
matter discussed in the second paragraph of this section. 

Tollmien was the first to establish an explicit relation between the Reynolds 
stress and conditions at the critical point (see Lin 1955, p. 54). His result, applic- 
able to the neutral case, is 

T = -n-pkIq5,1aU,”/U:. (2.8) 

This formula confirms that T can be positive, since the critical point obviously 
can occur where the profile curvature U,” is negative. 

3. Theory for a flexible boundary 
Consider first the boundary condition to be satisfied at  y = 0 if the boundary 

is flexible, though still solid, and a wave travelling at velocity c is superposed on 
it. The equation of the deformed boundary may be written 

y = aeik(;c-dl 

with the amplitude a considered to be in general a complex quantity. If this wave 
is generated by the action of the flow alone, as we shall presently suppose, all 
velocity and stress perturbations in the fluid are proportional to a; however, it is 
important not to express these perturbations with a as a common factor, bemuse 
the mathematical problem has to be formulated in such a way that the Tollmien- 
Schlichting problem is recovered by letting a -+ 0. For the wavy boundary, the 
kinematical and non-slipping conditions on the fluid velocity components take 
the following form (cf. I, p. 169), where the subscript w again denotes values at  
?I = 0: 

These are the exact boundary conditions according to linearized theory, the 
only restriction on their validity being that la1 should be very much smaller than 
the wavelength, so that k la1 < 1. Condition (2.2) applies as before at the outer 
edge of the boundary layer, which means that q5w/q5& is exactly the same function 
of k and c that occurs in the Tollmien-Schlichting analysis. 

We now assume that the wave on the boundary arises in response to a pressure 
fluctuation developed in the fluid. The effect of the actccompanying shear-stress 
fluctuation can be neglected, since this stress is extremely small in comparison 
with the pressure (see I, $7). Expressing the surface pressure distribution by 

ps = pP,eik(z*, 

we can represent the response of the flexible medium by the equation 

a = aP,/U&c, (3.2) 

which defines a parameter a/U&c dependent only on the properties of the medium 
and on k and c. The case of a rigid boundary is represented by a --f 0. (The factor 
l/U;c is included in this definition merely for convenience later.) 
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A very good approximation t o  P. can be obtained in terms of 4, and 4; by 
using the fact, demonstrated in I, that the pressure varies to a quite insignificant 
extent across the wall friction layer. The result is (cf. I, $ 3) 

By use of (3.2) and (3.3) the boundary conditions (3.1) can now be arranged to 
give 

Hence, introducing the functions P(z)  and E(k,c)  defined in $2, we obtain 
directly E + a ( l - E )  

1 +a( 1 - E, P( z )  = 

= El@, c ) ,  say. (3.4) 

This result has the same standing as the Tollmien-Schlichting formula (2.5),  
and clearly reduces to it when a -+ 0, i.e. when the boundary is made rigid. When 
the properties of the flexible medium are specified, a can be found as a function of 
k and c ;  and so, just as with (2.5), the right-hand side of (3.4) is calculable as a 
function of k and c only, while the left-hand side is again a function of x alone. 
Neutral-stability curves can therefore be found by the same graphical method 
as before. 

A more convenient way of treating the problem appears, however, when P and 
E are expressed in terms of the functions 9 and u + iv used in Lin’s formula (2.6). 
Equation (3.4) then gives 

Thus, a remarkably simple analytical connexion is established between the 
present case and the case of a rigid wall. Nevertheless, it does not follow that the 
complete solution of our problem is provided merely by a simple transformation 
of the neutral-stability curves for a rigid wall, because the additional term a 
entering Lin’s formula cannot be prescribed physically other than as a function of 
k and c, without restriction on the range of these parameters, and so the equation 
may admit solutions quite unrelated to those for a = 0. In particular, we must 
allow the possibility of neutral waves of the kind studied by Miles (1957) and in I, 
which are largely independent of viscosity. 

Three aspects of the above result will be considered under separate headings as 
follows. It may be helpful to note in advance that this division of material 
coincides roughly with our coverage of the expected three classes of waves, but 
there is necessarily some overlapping. 

F ( z )  = u+iv+a. (3.5) 

Non-dissipative flexible media 
In  this case a is real, being positive or negative accordingly as the wave velocity c 
is greater or less than the velocity of free waves on the boundary (see below). 
We first consider a property of the transformation on the right-hand side of 
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(3.4) which is discovered when the values of E,. and Ei calculated by Schlichting 
for the Blasius profile are substituted; we refer to the plot of Ei ws E, given in 
his book (1955, p. 328). For a real, it appears that a plot of the real and imaginary 
parts of our function El(k ,  c )  describes exactly the same lines c = const. as the 
plot of Ei ws E,.. In other words, the complex value of El is given everywhere as 
the value of E for the same c but some different value of k ;  thus El@,  c)  = E(ko,  c ) ,  
say. This property is unexpected; but the reason for it is soon found when the 
nature of the approximations in Schlichting’s calculat?on is examined, and the 
property is seen to be only an approximate one. 

As in many existing stability calculations, Schlichting’s estimate of E was 
essentially a first-order approximation for small k.  It was equivalent to the 
following approximation to u + i v  noted by Lin (1955, p. 86) : 

u;c  
u + i v =  1+u;c ~ +- IO1 ( u d _ y c ) 2  k( 1 - c)2 * 

The path of integration extends from the wall to the outer edge of the boundary 
layer (y = 1 since the boundary-layer thickness is implied to be the unit of length), 
and is indented under the singularity of the integrand at U ( y J  = c on the real 
axis of y .  Hence, by use of the calculus of residues, (3.6) gives 

v = -7rcu;p;2,  (3.8) 

where B denotes the principal value of the integral. According to this approxima- 
tion, v is independent of k .  It follows that if z, k,, c is a set of values which satisfies 
(3.5) when a = 0, then the equation is also satisfied, for a + 0 and real, with the 
same z and c but with a k such that u(k ,  c )  + a = w(k0, c) .  That is, 

At this point it would clearly be an advantage to redefine a without the 
normalizing factor U k c  introduced in (3.2), and hence cancel this factor from 
(3.9). As an alternative we define a ‘stiffness coefficient ’ for the flexible medium, 
writing 

(3.10) 

A n  important advantage of this definition is that, anticipating considerations 
made below regarding the possible properties of the flexible medium, we recog- 
nize that the functional dependence of p on k and c always follows the form 
{c?j(k) -c2)P(k);  and for a non-dispersive frictionless medium (see §4),  we have 
always j3 = Ak(c?j - c2}, where A and c,, are constants independent of k.  In  terms 
of p, (3.9) gives immediately 

(3.11) 

This simple result provides us readily with a complete description of the effect 
of a non-dissipative flexible boundary on the stability of Tollmien-Schlichting 
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waves. The conclusions to be based on this result are, of course, only approxi- 
mate; but they would appear to be fairly reliable since more accurate estimates of 
w show it to vary only very slightly with k, which is the crucial property in present 
respects . 

To fix ideas, let us reconsider Schlichting’s graph of the imaginary versus the 
real parts of F(z )  and E(k, c )  for the Blaaius profile. It has been established just 
above that we can use this graph-or any similar ones for other profiles-exactly 
as it stands, if the lines k = const. are now interpreted as k, = const. Therefore, 
from each point of intersection of the F and E curves, we get a set of values of 

FIQURE 1. Displacements of curves of neutral stability due to a compliant 
non-dissipative boundary (a, c 0, ai = 0). 

z, k,,, c which is the same set of values specifying neutrally stable conditions in 
the case of a rigid boundary. But, from the definition of z, the product kR must 
be the same for each given pair of values of x and c; thus kR for a flexible boundary 
is the same as k, R,, where R,, is the Reynolds number deduced from the same 
point of the graph in the rigid case. This means simply that the neutral curve 
c ws R will be displaced from the corresponding curve for a rigid boundary (see 
Schlichting 1955, p. 329) in the manner indicated in figure la:  to the right if 
a < 0 (i.e. /3 > 0 )  so that according to (3.11) k, > k, and to the left if a > 0 so 
that k, < k.  Points on the neutral curve k vs R will be displaced along the hyper- 
bolae kR = koRo as indicated in figure l b :  downward if a < 0, and upward if 
a > 0. 

It is clearly possible that in a practical example a ( k ,  c) changes sign within 
the relevant range of k and c ,  so that different parts of the neutrd curves are 
displaced in opposite directions. When this possibility is examined with regard to 
general properties of flexible media, an important new feature of the problem 
appears. In fact, according to the present theory for a real, the flow is destabilized 
down to indefinitely small Reynolds numbers when a can ohange its sign at any 
c within the range of Tollmien-Schlichting waves, and further study shows this 
to be true when a changes sign at any positive c < 1. The reason is aa follows. 

Whatever the actual nature of the non-dissipative mechanical system forming 
a boundary to the flow, it will have the property t h t ,  in the absence of the flow, 
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simple-harmonic surface waves are transmitted at a certain velocity c,-which 
depends on k if the system is ‘dispersive’. This assertion implies no more than 
that the system has both inertia and stiffness. Now, to have a < 0, which means 
that an applied surface pressure is in opposite phase to the wave formed on the 
boundary in response to it, the velocity c has to be less than co for the respective k, 
because the stiffness of the system is then the predominant factor in determining 
the response (cf. the example treated in 9 4). If the pressure is to be in phase with 
the wave so that a > 0, we must have c > c, because the inertia of the system is 
then the predominant factor. In fact, as has already been noted, it turns out 
generally that for a fixed k the effective stiffness p is proportional to ~ 8 - c ~ .  
This result bears out the already fairly obvious conclusion that, if c approaches 
co, there is a resonance effect and the response of the system becomes unbounded 
in the limit. It follows that if equktion (3.5) admits a solution with (c-c,) -+ O+ 
for any k, the neutral curve will have a loop extending to the region R -+ 0. 

Thus, if an effectively frictionless flexible device were to be used for stabiliza- 
tion, one essential requirement appears to be that its characteristic surface-wave 
velocity co(k) should not be less than the greatest velocity of neutral Tollmien- 
Schlichting waves, which for the Blasius profile is about 0.42 times the free-stream 
velocity. 

Consider now point A of figure 1 a and 1 b which gives the critical Reynolds 
number-i.e. the minimum value for which a neutral disturbance is possible- 
for a rigid boundary. Assuming that this point is transformed approximately to 
a corresponding extreme point on the neutral curve given by a real negative a, 
which is true if u does not vary too rapidly with k and c, we have 

(3.12) 

where (RJ, is the original critical value, k, is the corresponding wave-number, 
and k ( c k,) is the solution of 

(3.13) 

which is equation (3.11) with the velocity c1 of the optimum Tollmien-Schlichting 
wave substituted. (Por the BlElsius profile, we have c1 + 0.41 .) By means of similar 
relationships, other points (k, R) on the neutral curve could be derived from the 
co-ordinates of the original curve. From these results it is clearly a simple matter 
to estimate the critical Reynolds number when P(k, c) is specified for a particular 
flexible device. 

According to these results, an obvious requirement for a large stabilizing effect 
is that /I should be small for small k. Although for a non-dispersive medium (see 
9 4), p is proportional to k, this idealized case is an unhelpful example in present 
respects since (3.13) has no meaningful solution; furthermore, it can be seen 
from the discussion of Kelvin-Helmholtz instability a few paragraphs below that 
if this property were specified to hold down to indefinitely small k, this second 
form of instability would appear to be inevitable if co < 1, which seems un- 
realistic. However, for any real flexible medium the coefficient /I is bound to 
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become large at finite wavelengths A, since for indefinitely great length scales 
it is impossible to keep the ratio P,/a decreasing as rapidly as l / A ;  in fact, the 
practical extreme is that P,/a tends to a constant (i.e. a uniform compressibility). 
In  practice, therefore, /3 will have a certain minimum, and for effective stabiliza- 
tion this should evidently be made to occur at a reasonably small k, preferably 
rather smaller than the typical ko of Tollmien-Schlichting waves. We now 
assume this to be the case, and since the actual extent of stabilization then 
depends on the magnitude of the minimum rather than on the particular k, 
we can usefully write /3(k, c )  = /3,(c) in the theory and ignore the variations of 
/3 with kin so far as they fix the solutions of (3.11) or (3.13). 

The interpretation of (3.13) presents certain difficulties which are to  be dis- 
cussed below in connexion with Kelvin-Helmholtz instability, and it will appear 
that stabilization to  indefinitely high Reynolds number, which (3.13) indicates 
to be a possibility, may not in fact be realizable. However, we can recognize a 
wide range of conditions where there is a considerable stabilizing effect on Toll- 
mien-Schlichting waves while at the same time the possibility of other forms of 
instability is ruled out. For example, suppose that the minimum stiffness under 
static loading (c  = 0) is /3,( 0) = 1, and also co = l+. Kelvin-Helmholtz instability 
cannot occur under these conditions (see equation (3.17) below). Since 

we get from (3.13), for c1 = 0.41, 

Hence, according to (3.12), the critical Reynolds number is increased by approxi- 
mately 72 yo, which implies that the distance from the leading edge at which 
instability first occurs is increased by a factor ( 1.72)2 + 3-0. 

It remains to consider whether other types of neutral wave are possible, such 
perhaps as to specify the limit of an additional mode of instability in circum- 
stances where Tollmien-Schlichting waves are damped. The case where c i co 
has obviously not yet been properly covered; for even if co is made greater than 
the velocity of any Tollmien-Schlichting wave, so that the apparently disastrous 
effect on stability described above is avoided, waves with speeds near co may still 
be possible. 

The other outstanding case is as follows. 

Kelvin-Helmholtz instability 

Equations (3.12) and (3.13) indicate that the optimum Tollmien-Schlichting 
wave would be stabilized to extremely high Reynolds number if /3,(cl) + (1  - &, 
and similar results apply to waves with other values of c. This interpretation must 
be treated with caution, however, because values of /3 which are of the order of 
unity imply that the surface stiffness is of the same order of magnitude as the 
dynamic pressure of the free stream, and in such circumstances the Kelvin- 
Helmholtz type of instability (see Lamb 1932, $5  232,268) becomes an important 



EBectS of a flexible boundary on stability 525 

possibility. This mechanism of instability is largely independent of viscosity, 
and theoretical treatments of it (see particularly Miles 1959) generally msume 
an inviscid fluid; the leading result of the theory as regards the flow properties 
were in fact justified in the paper I as asymptotic limits at  infinite Reynolds 
number. This does not, of course, mean that this type of instability occurs only 
at very large Reynolds number; to the contrary, the fact that it can happen in 
the absence of viscosity implies that when the physical situation is such as to be 
more than marginally unstable at infinite Reynolds number, the instability will 
still be manifested at quite low Reynolds numbers since a large viscous effect is 
necessary to overcome the destabilizing factor. 

The present analysis is inappropriate to  account directly for Kelvin-Helm- 
holtz instability, but a slight reformulation of ideas is enough to explain it. At 
very large Reynolds number the pressure on a wave is very nearly of opposite 
phase to the surface displacement, although there remains a small component 
proportional to k which is in phase with the wave slope (I, $7); provided k is 
small enough for the latter component to be insignificant, a neutral wave is 
therefore possible when the negative in-phase pressure just balances the stiffness 
forces in the flexible medium, which tend to cancel the wave. Hence, using a result 
derived in I (equation (7.34)), we deduce the condition for a neutral wave to be 

(3.14) 

If k is very small, U = 1 over most of the range in which exp ( - k y )  is significant, 
so that (3.14) gives very approximately 

P(k ,c )  = (1-c)2. (3.15) 

Thus we have an interpretation of the result indicated by (3.11) or (3.13) that a 
neutral wave exists at infinite Reynolds number when (3.15) is satisfied. 

Considering the minimum value of P, we have 

(3.16) 

which is a result that has already been noted, and on substitution of this into 
(3.15) a quadratic equation for c is obtained. Kelvin-Helmholtz instability is 
indicated by this equation hv ing  complex conjugate roots (cf. Lamb, $232). 
The instability condition is found to be 

P d O )  < 1 - 4  ( C O <  11, (3.17) 

and the velocity of the wave which first becomes unstable is c = c;. 
We shall not pursue this topic further since for present purposes it seems 

enough tonote (3.17) as apractical test for this type of instability. Nevertheless, 
the connexion between the present results and the asymptotic results for Toll- 
mienSchlichting waves is a matter of great theoretical interest, and certainly 
it needs further study if our general problem is to be fully resolved. 
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Dissipative jlexible media 

In this case a has a negative imaginary part which, as will be verified later, is 
a measure of the work that must be done by the pressure on the disturbed 
boundary in order to maintain a neutral wave. 

For a given z, equation (3.5) shows v to be greater by an amount -ai than its 
value in the case of a rigid boundary. But, according to the approximation 
(3.8), v is a function of c alone that increases with increasing c over all values 
relevant to Tollmien-Schlichting waves. For ai < 0, therefore, wave velocities 
are greater than the velocities of the respective neutral waves for a rigid boundary. 
It turns out also that the values of k have to be slightly large, for the increased 
values of c, in order to satisfy the real part of (3.5) for a given z. 

When z is fixed, R is proportional to k - k 3 ,  and hence we see that a negative 
imaginary part of a tends strongly to shift the neutral stability curves everywhere 
towards lower Reynolds numbers. If - ai is large enough, it may even cancel the 
stabilizing effect of a negative a,.. This general conclusion is confirmed when one 
applies the transformation (3.4) with complex a to Schlichting’s results for E. 

It is thus established that dissipation in the flexible medium has a destabilizing 
effect in relation to Tollmien-Schlichting waves. This result is surprising at  
first sight, but its physical explanation is readily forthcoming when Prandtl’s 
and Tollmien’s interpretations of the mechanism of instability-as recalled in 
3 2-are applied in the present context. We shall return to this matter presently. 

We consider next the class of waves on the boundary whose velocity of pro- 
pagation is determined mainly by the properties of the flexible medium; i.e. 
these are essentially ‘free’ waves with c very nearly equal to co. Unlike the cases 
previously considered, the essential physical factor now is that the over-all 
stiffness of the boundary is quite high (e.g. for static loading, P(k,O) % l), 
and the response to the flow depends primarily on the resonance effect at c = co. 
Thus the Kelvin-Helmholtz type of instability is altogether ruled out, since the 
effect of the negative in-phase pressure will displace c only very slightly below co. 

As regards the interpretation of (3.5) in this case, the outstanding fact is that 
the equation represents essentially a balance between u + iv  and a, owing to the 
fact that a,. is now extremely sensitive to the value of c. Thus the effects of vis- 
cosity as represented by the function 9 ( z )  ceases to have a critical influence on 
the conditions for a neutral wave, and to represent typical neutral conditions this 
function can well be ignored. (Of course, if we specified k,R and c + co to be 
typical of Tollmien-Schlichting waves, this function has the same sort of magni- 
tude as previously considered; but the important thing now is that the question 
of whether the wave is stable or unstable under such conditions depends critically 
on factors other than viscosity, and so these conditions are not representative of 
neutral waves.) We therefore take the neutral 
by u = -a,, v = - ai, which are equivalent to 

- 
conditions to be given typically 

E,= l+(i) , 

Ei = (3,. 
,(3.18) 

(3.19) 
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Now, although these two equations have an unfamiliar form, a little study 
shows that they reproduce essentially the problem treated by Miles (1957) 
and further investigated in I. Miles derived a theory of water-wave formation by 
wind on the assumptions that (i) the water-wave velocity is independent of the 
air flow, (ii) the conditions for a neutral wave may be decided very critically by 
approximate energy considerations, i.e. an expression for the energy transfer 
from the air flow is put equal to an expression for the rate of viscous dissipation 
in the water, and (iii) the effects of viscosity in the air are negligible, except in 
so far as they determine the phase change across the ‘critical layer’ at which 
U = c (see Q 2). It is now seen that a similar theory would account for waves of 
the present sort. 

The first fact to be observed from (3.18) and (3.19) is that E = - U:uq5w/cq5:, = 1 
very nearly, which means simply that the boundary conditions (3.1) are satisfied 
by 4 alone, i.e. there is no wall friction layer. This would be the natural starting 
point if the present special case were to be treated individually in a way such as 
Miles used. Actually the non-slipping boundary condition cannot be applied 
rigorously to an inviscid flow; but, as was discussed in I, this condition is satisfied 
automatically if one applies the modified kinematical condition introduced by 
Miles-i.e. q5 -+ (c  - U) a for y -+ 0, which means physically that streamlines 
close to the boundary must follow the wave contour as well aa the bounding 
streamline itself. The fact that the latter condition is only approximate allows 
the s m d  difference (l/a) from the result E = 1 which would follow if both the 
kinematical and non-slipping boundary conditions were applied rigorously to 
the inviscid solution. The essential scheme of Miles’s theory is to find q5 from the 
approximate boundary condition and then estimate Ei, as needed in (3.19), from 
properties of q5 accumulated over the whole flow. 

The term (l/ar) in (3.18) is evidently of little consequence. It merely implies 
that the wave velocity is not quite co, since the in-phase negative pressure on the 
wave makes a slight reduction in the over-all stiffness of the system as experienced 
by the wave. 

The crucial relation with regard to stability conditions is (3.19). This can be 
shown to correspond exactly to Miles’s criterion that the energy supply to a 
neutral wave on the boundary balances the rate of energy absorption. Thus we 
recognize that the stability of waves of the present sort depends critically on the 
internal damping of the flexible medium. Instability can always be prevented 
by making the damping large enough, although we know that damping has a 
contrary effect on the mode of instability examined previously. Note that these 
waves can only be excited when co is less than the free-stream velocity, since only 
then is Ei (or v) positive; i.e. a positive Reynolds stress is developed by a wave 
only when there is a critical point at which U(yJ  = c = co < 1. 

As a final comment on the analysis, in particular to interpret the remarkable 
difference in the effects of damping noted just above, we note that the imaginary 
part of (3.5) is a precise representation of the energy balance maintained by a 
neutral wave; thus we have 

v-la,l - - F i ( Z )  = 0, (3.20) 

where the three terms represent the relative magnitudes of, respectively, the 
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rate of energy conversion from the primary flow by Reynolds stress, the work done 
on the boundary by the surface pressure distribution, and the rate of dissipation 
by viscosity. [It is fairly easy to check this result. For instance, the rate of 
energy conversion TC may be estimated by Tollmien’s formula (2.8); and hence 
by use of the approximations q5c = #w + (c/ U;) q5; and UA = U;, it may be identi- 
fied with the approximation (3.8) for v ;  again a precise identification with v may 
be established by taking the formula (2.7) for 7 and using the boundary condi- 
tions. The second term in (3.20) is readily established from the fact that the 
average work done on the boundary is -p,aq/at, where 7 is the displacement.] 

For the surface waves that were studied last, the relative energy supply v is 
essentially fixed since c is nearly equal to co which is a property of the flexible 
medium. Thus we see that internal damping, as represented by lai[ can take over 
the role that viscosity would have in stabilizing a neutral wave. For the modified 
Tollmien-Schlichting waves, on the other hand, the over-all stiffness must be 
so small in order to  have any effect that c is not fixed by the properties of the 
medium. Thus an increase in internal damping is readily accommodated by an 
increase in v (i.e. the flow is permitted to develop additional Reynolds stress) ; 
and from our knowledge of the structure of the wall friction layer (i.e. its depend- 
ence on the special combination of parameters in x ) ,  we see that for an increased c 
the Reynolds number has to be reduced in order to make the relative viscous 
dissipation sufficient to restore the energy balance for a neutral wave. 

4. The flexible medium 
It has been seen that a requirement for any useful stabilizing device is that it 

comprises a dispersive medium for the transmission of surface waves. The precise 
analysis of such devices is liable to be fairly complicated, and it is not proposed 
to consider any example here. The case of a non-dispersive medium is very 
straightforward, however, and the following simple treatment is included to 
illustrate the meaning of the response coefficient a. Two instances of non-dis- 
persive media, i.e. media in which free waves are propagahd at a velocity inde- 
pendent of wavelength, are (i) a flexible inextensible sheet under longitudinal 
tension and (ii) a deep layer of uniform elastic material, the surface waves in 
this case being ‘Rayleigh waves’ (Love 1927, $214). 

Consider a small displacement y = q(x,t)  of the plane surface bounding the 
medium. In  the absence of dissipative forces, the dynamical equation satisfied 
by q is the wave equation 

Here T is a constant ’stiffness coefficient ’ for the surface, and m is the effective 
mass per unit area of the surface. In  the case of a flexible sheet, T is simply the 
tension per unit span and m the actual mass per unit area; but these constants 
have corresponding, though perhaps less immediate, interpretations in all 
examples of the class considered. The velocity 1 co of free waves is therefore given 
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When the waves are subject to linear damping, their equation takes the modSed 
form 

where K is a damping coefficient, being necessarily real and positive. (The medium 
is now dispersive, but only very slightly so if K / k c o  is small; for example, non- 
periodic waves are propagated with little change of form though with over-all 
attenuation .) 

Now, (4.1) and (4.3) are in effect equations relating the normal force per unit 
area developed on the surface y = 0 to the inertial reaction of the medium 
exerted across this surface. And so, if an external pressurep,(x, t) is applied on this 
surface, the equation governing the response of the medium clearly is 

For applied pressure p s  = ppseiW+ 

producing a deflexion 7 = aeW~-cO, 
equation (4.4) shows that 

pP, = m((c2 - c;) k2 + i K k C }  a. 

Hence, for the surface compliance a/<, we get 

(4.5) 

(4.6) 
- a =- {  p (c2-c:) k2-iiKkc 
P, m I ( C ~ - C ; ) T C ~ + ~ K ~ C ~ ~  ’ 

and a is the dimensionless coefficient obtained on multiplying this by CU;. An 
electrical analogue of this result is the ‘effective capacity’ of a series LCR 
circuit; the pressure P, is analogous to an applied voltage alternating at frequency 
kc, and the displacement a is analogous to the resulting charge on the condenser. 

Two points illustrated by this result may be noted, For the real part of a 
to be negative, which was shown in 6 3 to promote stabilization, we must have 
c; > c2; i.e. the velocity of free waves in the medium must exceed the velocity of 
the relevant flow disturbances. This criterion for a negative ar in fact applies 
generally, whether or not co depends on k, and its physical basis is obvious. (It is 
perhaps already perfectly clear from the analogy noted above.) Consider the 
wave which travels over the surface of the medium in response to a simple-har- 
monic pressure distribution with a certain k and c. If c2 c c& the frequency Ikc[ of 
the forced vibrations at  a fixed point of the surface is less than the frequency 
Ikc0l a t  which an undamped free simple-harmonic motion can occur, and at 
which therefore the inertial forces generated in the motion exactly balance the 
restoring forces due to the stiffness of the medium. Thus, the stiffness forces 
will predominate when c2 < c;, so that the surface will respond to the applied 
pressure in the same direction as it would to a static load. Equation (4.6) also 
con6rms that for positive c the imaginary. part of a is negative when the medium 
is dissipative, i.e. when energy is absorbed from the agency responsible for the 
moving pressure distribution. 

I 
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5. Conclusion 
The theoretical results derived in $ 3  serve at least to point out the essential 

factors in the operation of a flexible boundary as a stabilizing device, and so they 
may be useful as a guide for further experimental development of Kriimer’s 
idea (1960a, b).  It must be emphasized, however, that the present theory only 
concerns stability with respect to very small disturbances to which the principle 
of linear superposition can be applied. Nothing has been learnt about the 
influence of a flexible boundary on flow disturbances whioh are not small, 
although in relation to the practical problem this matter may be just as important 
as the one studied here. That is to say, it remains in question whether a flexible 
boundary might inhibit the development of the concentrated turbulent spots 
which are often the first manifestation of instability in laminar boundary layers 
when the flow has a high level of ‘background ’ turbulence. 

The stability analysis dealt only with long-crested waves travelling in the 
direction of flow, yet ‘three-dimensional’ waves travelling obliquely to the flow 
are obviously a physical possibility. For parallel flows with rigid boundaries, it  is 
well known that consideration of two-dimensional waves is sufficient to solve 
the stability problem since Squire’s theorem (Lin 1955, $3.1) shows these waves 
to  have the greatest tendency to instability. The same theorem applies to 
our problem also, though the conclusions to be drawn from it are not quite m 
definite as in the previous case. If the response of the boundary is assumed to be 
independent of the wave direction, as it well might be in practice, then the 
stability problem for an oblique wave is the same as that for a wave in the flow 
direction at a lower flow velocity; this follows from the fact that an oblique wave 
depends on the primary flow only in respect of its component in the direction of 
propagation of the wave. As regards the modified Tollmien-Schlichting waves 
and the Kelvin-Helmholtz waves which have been considered, the present 
two-dimensional theory would appear therefore to account adequately for the 
practicd stability conditions. This may not always be so, however, as regards 
surface waves whose velocity in any direction of approximation is approximately 
c,,, for a situation is conceivable in which a reduction in the effective free-stream 
velocity (i.e. by taking the resolved component in an oblique direction) would 
tend to destabilize such waves by putting the critical point in a more favourable 
pa& of the velocity profile. Nevertheless, this possibility does appear rather 
exceptional, and though we need to make some slight reservation on its account 
we can fairly confidently propose that the two-dimensional theory essentially 
covers the practical problem. 

Our conclusions regarding the two main classes of waves4.e. modified 
Tollmien-Schlichting waves, say Class A, and surface waves, say Class B- 
suggest two possible approaches to the design of practical measures for boundary- 
layer stabilization. The first is to specify the flexible medium with a fairly high 
over-all stiffness but such that, at values of k for the ‘most dangerous’ Tollmien- 
Schlichting waves, the velocity c,(k) coincides with the Tollmien-Schliohting 
wave velocity. Hence the response of the boundary will ham a totally disruptive 
effect on the Tollmien-Schlichting mechanism of instability, the wall friction 
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layer being effectively removed. In other words, Class A is turned into Cltw B, 
and the role of stabilization is taken over wholly by the internal damping of the 
flexible medium. The damping should be just large enough to prevent Class B 
waves from developing, and its amount is liable to be fairly critical; too much 
inhibits Class B instability yet tends to ‘let in’ Class A again, and might even 
result in an over-all destabilization because of its effect on Class A waves at  
velocities somewhat different from c,; on theother hand, too little damping would 
have the disastrous effect of allowing the excitation of Class B waves, which 
would happen at  Reynolds numbers less than the critical value for a rigid bound- 
ary since the damping action of viscosity is largely cancelled for Class B waves. 
It is probably importmt that co(k) should be made nearly equal t o -o r  perhaps 
just slightly greater than-the Tollmien-Schlichting wave velocity near the 
minimum of R on the neutral-stability curve for a rigid wall (e.g. for Blasius 
flow, c = 0.41U0 for k = 0.34/6*); this seems the first step to insure that the 
critical Reynolds number is raised to some extent by the present means. At 
higher Reynolds numbers the value of c and k for the Tollmien-Schlichting wave 
of greatest amplification steadily decrease, c being very roughly proportional to 
k, and it would seem that this relationship between c and k should be followed as 
closely and as far as possible in order to obtain maximum stabilization. If the 
stabilizing device were a layer of uniform visco-elastic solid material, for example, 
its thickness would have to be considerably less than a wavelength for c to 
vary with k as much m is required. A practical possibility is that such a layer 
might be ‘tuned’ to the Tollmien-Schlichting waves over a considerable range 
of Reynolds number (i.e. over a considerable length of the boundary layer) by 
varying its thickness. 

The present method of design seems at first sight somewhat unpromising 
since its success apparently depends rather critically on the choice of properties 
for the flexible medium, and it may be expected to serve only for a very limited 
range of the free-stream velocity. However, the succesa of Kramer’s experiments 
appears to be attributable to the particular mechanism of stabilization described 
here, and indeed a rough version of the general specifications explained above 
wm established empirically by him. For instance, the flexible coatings used in 
his experiments were designed in such a way that our co(k) would match the 
Tollmien-Schlichting wave velocity at the average Reynolds number of the 
coated area [in his paper (1960b) he tentatively assumes the boundary-layer 
waves to be equivalent in their effect on the boundary to standing pressure 
waves, and he specifies that the product FA, where P is the frequency of resonance 
of the coating for a wavelength A, should equal the representative velocity of 
the boundary-layer waves; the wavelength cancels from his design formula 
because his assumptions regarding the properties of the coating make it in effect 
non-dispersive]. His experimental results also showed that there is an optimum 
amount of damping in relation to stabilizing effect. 

As the second possible method, the flexible medium might be designed with 
fairly low over-all stiffness but such that co is large enough to avoid the possibility 
of Class B instability entirely. Stabilization of Class A waves is then effected by 
the compliant response of the boundary, i.e. as the result of a negative real a. 

34-2 
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As the essential physical mechanism of stabilization in this case, the wall friction 
layer is modified so as to  render Class A waves incapable of developing sufficient 
Reynolds stress to overcome viscous dissipation; in other words, there is a cancel- 
lation of the destabilizing effect of viscosity for which Prandtl’s explanation was 
recalled in 5 2. If this method is used, an important requirement is that damping 
in the medium should be small, because it has been seen in $ 3  that damping 
provides an alternative means for the development of Reynolds stress by Class A 
waves and is therefore a destabilizing factor. 

Roughly speaking, this second method requires an elastic medium which is both 
soft (to have a large response to surface pressures) and also light (to keep c,, fairly 
high despite the fist property), and which at the same time suffers little internal 
friction. The stiffness of the boundary may possibly need to be kept above a 
certain margin, however, so that the Kelvin-Helmholtz type of instability is 
avoided, and this factor may limit the ultimate scope of the method; this point 
deserves further study. 

To obtain a useful stabilizing effect by the second method, it seems likely that 
the elastic constants of the medium (rigidity modulus, etc.) would have to be 
of about the same order of magnitude as the dynamic pressure +pUi of the 
free stream, and so the method might prove impracticable for low-speed applica- 
tions because effective materials would be too fragile (though, of course, suffi- 
ciently enlarged clear compliances might possibly be obtained by u8e of cellular 
structures like Kriimer’s device). On the other hand, there may well be suitable 
materials for use at high speeds, and it is such applications that appear to offer 
the most exciting possibilities for this new means of boundary-layer stabilization. 
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